The Price Elasticity of African Elephant Poaching

Quy-Toan Do (World Bank), Andrei Levchenko (Michigan), Lin Ma (NUS) Julian Blanc (UNEP), Holly Dublin, and Tom Milliken (TRAFFIC)

What is this paper about?

- Estimate the supply elasticity with respect to price of an illegally-traded commodity
- Look at the elasticity of both price in producing countries and price in consuming countries
- First attempt in the context of elephant ivory

Why is it important?

- African elephants listed in Appendix I of CITES (except for three Southern African countries) - endangered
- Between 2007 and 2016 : reported decrease in the elephant population of more than 100,000 elephants out of 400+ thousand (Thouless et al. 2016)
- Decline attributed to poaching (CITES 2016)
- Supply elasticity to price (i.e. regulation) important to inform policy choices, whether in producing or consuming countries.

What do we do?

- Compile a data set on ivory prices
- Combine with output data
- Use demand shocks to instrument for price to measure supply elasticity

Introduction

What do we find?

- Poaching is price inelastic:
 - elasticity wrt Africa prices = .44
 - elasticity wrt China prices = .40
 - price pass-through rate = .9
- Large price drop to induce sizable reduction in poaching

Literature

- Conservation: bison (Taylor 2011), whale (Allen and Keay 2004),
- Identifying supply elasticity (simultaneous equation problem) :
 - Oil, agricultural commodities
 - Fish: Angrist, Graddy, and Imbens (2000)
 - Drugs (Coca supply): Angrist and Kugler (2008);
 - Illegal trade, crime: Draca and Machin (2015)
- Market regulation
 - Fiscal policy
 - Becker, Murphy, and Grossman (2006)
 - Alcohol (Miron 2004)
 - Drugs (Keefer and Loayza 2010)

Outline

- Background and Motivation
 - Introduction
 - The African elephant poaching crisis
- Empirical Methodology
- 3 Price data
- Other data
- Results
 - Poaching elasticity with respect to Africa prices
 - Price pass-through
 - Elasticity of poaching with respect to China prices
- Conclusion

A few facts on African elephants

- largest land animal
- both male and female have tusks
- some population estimates: 3-5 million in early 20th century
- recent AfESG Report:
 - 415,428 +/- 20,111 in areas systematically surveyed
 - 117,127-135,384 elephants in areas not systematically surveyed
 - 62% of estimated known range covered

African elephant range

Demand for ivory products

- piano keys (pre 1989)
- bangles, chopsticks, figurines, trinkets, signature seal blanks
- price of carved piece can reach US\$285,000 (Martin and Vigne 2017)

Poaching

- African Elephant Status Report : reduction of approx. 118,000 elephants between 2007 and 2016
- Combined with new discoveries: estimated decrease 104,000-114,000
- Since 2006: worst poaching crisis since pre-ban period (70s, 80s)

Policy environment

- 1989: African elephant down-listed to endangered (Appendix I of CITES)
 - International trade is banned
 - Exceptions for elephants in Botswana, Zimbabwe, and South Africa, but moratorium on trade
- Focus on three segments of supply chain
 - Stop the killing: increased law enforcement, community-led conservation
 - Stop the trafficking: customs enforcement
 - Stop the consumption: demand reduction initiatives, shutting down of consumer markets
- Recurrent debate on legalization

Outline

- Background and Motivation
 - Introduction
 - The African elephant poaching crisis

2 Empirical Methodology

- 3 Price data
- Other data

5 Results

- Poaching elasticity with respect to Africa prices
- Price pass-through
- Elasticity of poaching with respect to China prices
- Conclusion

Supply curve Technology

- In site s, country c, and year t, representative poacher
- Quasi linear utility:

$$U_{sct}(Y) = P_{ct}Y - C_{sct}(Y)$$

• Cost function:

$$C_{sct}(Y) = \frac{\beta}{\beta+1} \exp(-\frac{\Theta_{sct}}{\beta}) Y^{\frac{\beta+1}{\beta}}$$

- β : curvature of the cost function
- Θ_{sct} : supply shifters

Supply curve Market outcome

• Marginal cost = price

$$C_{sct}'(Y_{sct}) = P_{ct}$$

• in logs:

$$y_{sct} = \Theta_{sct} + \beta \cdot p_{ct}$$

Supply curve Supply equation

• Decomposition of supply shifters:

$$\Theta_{sct} = \alpha + \eta_{sc} + Z_{sct} \cdot \gamma + \varepsilon_{sct}$$

• Estimating equation

$$y_{sct} = \alpha + \beta \cdot p_{ct} + Z_{sct} \cdot \gamma + \eta_{sc} + \varepsilon_{sct}$$

• OLS is biased: $Cov(\varepsilon, p|Z, \theta) \neq 0$

Demand curve

Hotelling condition

- Ivory is storable (Kremer and Morcom 2000)
- Hotelling condition (no arbitrage):

$$E_t[P_{t+1}] = E_t[(1 + r_{t+1})]P_t$$

- Intuition: sell today vs. sell tomorrow
- Competitive storage market

• Hotelling condition implies random walk process for prices:

$$p_t - p_{t-1} = r_t + u_t + v_t$$

- r_t stochastic and shocks to ivory demand (u) and supply (v).
- E(u) = E(v) = 0: on average, prices grow at rate r_t .
- Identifying assumption: Cov(u, v) = Cov(w, v) = 0.

Instrumental variable

• Gold prices follow similar random walk process:

$$p_t^g - p_{t-1}^g = r_t - z_t$$

• *z_t*: shocks to gold markets

• Substituting:

$$p_t - p_{t-1} = p_t^g - p_{t-1}^g + u_t + v_t + z_t$$

- Exclusion restriction: Cov(z, v) = 0
 - Shocks to ivory markets do not affect gold markets
 - Shocks to gold prices do not supply shifters (e.g. poachers' outside option)

Price pass-through

• Price pass-through equation

$$p_{ct} = \theta p_t - \delta_{ct}$$

- θ : pass-through rate
- δ_{ct} : trade costs

Summary

• Supply elasticity w.r.t. local (Africa) prices:

$$y_{sct} = \alpha + \beta \cdot p_{ct} + Z_{sct} \cdot \gamma + \eta_{sc} + \varepsilon_{sct}$$

• p_t^g as instrument for p_{ct} .

• Supply elasticity w.r.t. global (China) prices:

$$y_{sct} = \tilde{\alpha} + \tilde{\beta} \cdot p_t + Z_{sct} \cdot \tilde{\gamma} + \eta_{sc} + \tilde{\varepsilon}_{sct}$$

• p_t^g as instrument for p_t .

Outline

- Background and Motivation
 - Introduction
 - The African elephant poaching crisis
- Empirical Methodology
- 3 Price data
- 4 Other data
- 5 Results
 - Poaching elasticity with respect to Africa prices
 - Price pass-through
 - Elasticity of poaching with respect to China prices
- Conclusion

Data collection: sources

• Data on prices collected from

- published reports
- data from seizures (ETIS)
- proprietary industry data and customs data
- websites
- government-held databases
- market monitoring data from TRAFFIC
- 21,395 data points
 - raw and carved: 4,873 raw ivory prices
 - 91% African elephant
 - every segment of supply chain, but mostly importers (33%) and middlemen in country of production (27%)
 - 40% of the data are pre-1989

Price partialling out

- Restrict to raw ivory prices
- Systematic variation:
 - prices from customs declaration: lower
 - prices from "expert opinion" : higher
 - prices from middlemen (local) or poacher: lower
- Price partialling out:
 - regress price on dummies (source, location on supply chain, ...) except year and country
 - take residuals take median
 - variation at the year x country level

Price series: AFR vs CHN

CHN prices: 1970-2015 Random walk?

CHN prices: 1970-2015 Testing for unit root

- Prices increase at constant rate (5%) both before and after 1992 (5.03% vs. 5.52%)
- 1992 attributable to 1989 CITES ban
- drop equivalent to 17 years of price growth
- unit-root test
 - Dickey-Fuller test and Phillips-Perron test (regress $p_t p_{t-1}$ on p_{t-1} and tests if the coefficient is zero)
 - run separately pre/post 1992
 - fail to reject random walk (with drift) hypothesis

Outline

- Background and Motivation
 - Introduction
 - The African elephant poaching crisis
- 2 Empirical Methodology
- 3 Price data
- Other data
- Results
 - Poaching elasticity with respect to Africa prices
 - Price pass-through
 - Elasticity of poaching with respect to China prices
- Conclusion

Poaching data

- In 1997, CITES institutes monitoring of illegal killing of elephants: MIKE programme
- Survey of selected sites (60 in 30 range states) for elephant carcasses: classification of carcasses as legally vs. illegally killed.
- Construction of PIKE: Proportion of illegally-killed elephants
- Data coverage: 2003 onwards

PIKE over time (2003-2016)

Other data

- Total amount of ivory seized (ETIS)
- Land area of a site
- GDP growth, Civil conflict variable

Results

Outline

- - Introduction
 - The African elephant poaching crisis

Results

- Poaching elasticity with respect to Africa prices
- Price pass-through
- Elasticity of poaching with respect to China prices

OLS results

LHS=Ln(Poaching)	OLS			2SLS, IV = Gold Price				
	(1)	(2)	(3)	(4)	(5)	(6)		
Ln(Median Price)	0.178***	0.180***	0.431***	0.436***	0.637***	-0.301		
Ln(Total Carcass Found)	1.053***	(0.054) 1.046*** (0.052)	0.984***	0.973***	1.124***	0.980***		
Number of Conflicts	(0.052)	-0.123	(0.055)	-0.196	-0.350**	-0.055		
GDP Growth Rate		(0.166) -0.019		(0.157) -0.016	(0.168) 0.009	(0.159) -0.035*		
Total Seizure		(0.022)		(0.018)	(0.019) -0.114*	(0.019)		
Year					(0.058)	0.132*** (0.043)		
				First Stage				
Ln(Gold Price)			1.226*** (0.272)	1.222*** (0.269)	0.818*** (0.132)	-1.167*** (0.325)		
N First Store E statistic	151	151	151	151	114	151		
Site FE	Yes	Yes	Yes	Yes	Yes	Yes		

Instrumental variables: first stage

2SLS results

LHS=Ln(Poaching)	OLS			2SLS, IV = Gold Price				
	(1)	(2)	(3)	(4)	(5)	(6)		
Ln(Median Price)	0.178***	0.180***	0.431***	0.436***	0.637***	-0.301		
Ln(Total Carcass Found)	1.053***	(0.054) 1.046*** (0.052)	0.984***	0.973***	1.124***	0.980***		
Number of Conflicts	(0.052)	-0.123	(0.055)	-0.196	-0.350**	-0.055		
GDP Growth Rate		(0.166) -0.019		(0.157) -0.016	(0.168) 0.009	(0.159) -0.035*		
Total Seizure		(0.022)		(0.018)	(0.019) -0.114*	(0.019)		
Year					(0.058)	0.132*** (0.043)		
				First Stage				
Ln(Gold Price)			1.226*** (0.272)	1.222*** (0.269)	0.818*** (0.132)	-1.167*** (0.325)		
N First Store E statistic	151	151	151	151	114	151		
Site FE	Yes	Yes	Yes	Yes	Yes	Yes		

When variables are not stationary

- Price and poaching series are not stationary (trend)
- Correlations might be spurious unless variables are co-trending
- Regression in first differences?
- IV is in any case consistent (Phillips and Hansen 1990)

Co-integration test

- Test of co-integration (Engel-Granger)
- Two-step process:
 - Compute linear relationship between variables of interest
 - Test stationarity of residuals

Variables	Ν	z-statistics	Critical Values		es
			1%	5%	10%
P(Africa), P(Gold)	45	-5.1924	-4.1509	-3.4753	-3.1400
P(China), P(Gold)	37	-7.1020	-4.1770	-3.4892	-3.1495
P(Africa), P(China), P(Gold)	37	-7.1100	-4.6649	-3.9556	-3.6060
Global Poaching, P(Africa)	13	-3.2907	-4.8722	-3.8465	-3.3868
Global Poaching, P(China)	7	-3.2903	-5.2169	-4.0154	-3.4958
Global Poaching, P(Gold)	13	-3.7587	-4.8722	-3.8465	-3.3868

Robustness

- Restrict to larger sites (problem of sites with zero carcasses found) heterogeneity
- Clustering methods: no Moulton correction two-way clustering (country x year)
- Alternative instrument: silver prices

Robustness - results

LHS=Ln(Poaching)	Large (8)	Large (16)	One-way	Two-way	Silver	Silver& Gold
	(1)	(2)	(3)	(4)	(5)	(6)
Ln(Median Price)	0.526***	0.606***	0.436*** (0.114)	0.436*** (0.136)	0.602*** (0.134)	0.323***
Ln(Total Carcass Found)	0.959*** (0.060)	0.964*** (0.071)	0.973*** (0.061)	0.973*** (0.088)	0.926*** (0.062)	1.005*** (0.053)
Number of Conflicts	-0.293* (0.172)	-0.481 [*] (0.275)	-0.196** (0.087)	-0.196** (0.097)	-0.244 (0.164)	-0.164 (0.162)
GDP Growth Rate	-0.017 (0.020)	-0.019 (0.022)	-0.016 (0.023)	-0.016 (0.019)	-0.014 (0.019)	-0.017 (0.020)
			First	Stage		
Ln(Gold Price)	1.167*** (0.288)	1.176*** (0.264)	1.222*** (0.217)	1.222*** (0.256)		2.868*** (0.537)
Ln(Silver Price)	()	(* *)	(***)	(****)	0.681** (0.283)	-1.587*** (0.476)
N First Stage F statistic Site FE	117 35.898 Yes	80 27.189 Yes	151 54.542 Yes	151 54.542 Yes	151 17.390 Yes	151 46.408 Yes

Policy

- Supply is inelastic: .44
- Partial equilibrium interpretation:

$$\arg\max_{Y} P_{sct}Y - \frac{\beta}{\beta+1}Y^{\frac{\beta+1}{\beta}}e^{-\frac{\Theta_{sct}}{\beta}} = \arg\max_{Y} e^{\frac{\Theta_{sct}}{\beta}}P_{sct}Y - \frac{\beta}{\beta+1}Y^{\frac{\beta+1}{\beta}}$$

- If law enforcement increases probability of apprehension 10%, poaching drops by 4.4%
- Half of all tusks seized leads to PIKE dropping to .46 (from .63).

Estimating the price pass-through rate

$$p_{ct} = \theta p_t + \delta_{ct}$$

- Prices over 1970-2014
- IV using gold prices

Correlation AFR - CHN prices

42 / 52

Results

First stage

Price pass-through

Results

LHS = Ln(Median Price), Africa	0	LS		2SLS, IV = Gold Price					
	(1) All Years	(2) All Years	(3) All Years	(4) Pre-1993	(5) Post-1993	(6) Post-2002			
Ln(Median Price), China	0.284**	0.349***	1.000***	1.992***	0.955***	0.900***			
Ln(Total Carcass Found)	(0.121)	(0.120)	(0.100)	(0.505)	(0.130)	0.206***			
Constant	0.002 (0.071)	-0.823 (1.396)	-1.321 (1.171)	-0.941 (0.915)	-1.287 (1.177)	2.195* (1.239)			
	. ,	. ,	First Stage						
Ln(Gold Price)			0.740*** (0.186)	0.266* (0.143)	0.955*** (0.264)	1.107*** (0.353)			
N First Stern Fratatistic	432	432	432	166	266	188			
First Stage F statistic Fixed Effects	None	Country	Country	Country	Country	90.728 Site			

Discussion

- Unitary price pass-through rate: no arbitrage opportunities in shipping
- OLS lower than 2SLS: consistent with law enforcement (seizures)

Elasticity of poaching with respect to China prices

- Same regression specification but with global (China) prices instead of local (African countries).
- IV global (China) prices with gold prices

OLS and 2SLS

LHS=Ln(Poaching)	OLS				2SLS, IV =	Gold Price	
	(1)	(2)		(3)	(4)	(5)	(6)
Ln(Median Price), China	0.129**	0.129**		0.395***	0.398***	0.327***	0.224***
Ln(Total Carcass Found)	1.027***	1.030***		1.010***	1.012***	1.052***	0.994***
Number of Conflicts	(0.023)	0.031		(0.020)	0.000	-0.088	-0.025
GDP Growth Rate		-0.003			-0.005	0.006	-0.004
Total Seizure		(0.005)			(0.005)	(0.008) -0.011 (0.046)	(0.005)
Year						()	0.022** (0.009)
					First	Stage	
Ln(Gold Price)			-	0.911*** (0.345)	0.922*** (0.349)	1.179*** (0.435)	1.344** (0.636)
N First Stage F statistic	422	422		422 155.102	422 152.438	248 142.073	422 98.212
Site FE	Yes	Yes		Yes	Yes	Yes	Yes

Robustness

LHS=Ln(Poaching)	Large (8)	Large (16)	One-way	Two-way	Silver	Silver& Gold
	(1)	(2)	(3)	(4)	(5)	(6)
Ln(Median Price), China	0.512***	0.660***	0.398***	0.398***	0.346***	0.386***
	(0.092)	(0.129)	(0.138)	(0.144)	(0.081)	(0.066)
Ln(Total Carcass Found)	1.034***	1.057***	1.012***	1.012***	1.015***	1.013***
	(0.034)	(0.044)	(0.029)	(0.037)	(0.029)	(0.029)
Number of Conflicts	-0.068	-0.020	0.000	0.000	0.006	0.002
	(0.076)	(0.118)	(0.052)	(0.059)	(0.069)	(0.068)
GDP Growth Rate	-0.007	-0.005	-0.005	-0.005	-0.005	-0.005
	(0.006)	(0.009)	(0.005)	(0.004)	(0.005)	(0.005)
			First	Stage		
Ln(Gold Price)	0.844**	0.818**	0.922*	0.922**		0.719
. ,	(0.352)	(0.338)	(0.471)	(0.465)		(0.734)
Ln(Silver Price)	· · ·	· · /	· · ·	· /	0.773**	0.206
					(0.328)	(0.666)
Ν	281	176	422	422	422	422
First Stage F statistic	86.188	52.823	152.438	152.438	127.193	77.531
Site FE	Yes	Yes	Yes	Yes	Yes	Yes

Discussion

•
$$P_t \Rightarrow P_{ct} \Rightarrow Y_{sct}$$

- A = pass-through rate = .900
- B = supply elasticity wrt local prices = .436
- AxB = 0.392
- C = supply elasticity wrt global prices = 0.398

Discussion

On the closing of the Chinese market

- Documented drop in prices of up to 2/3 between 2014 and 2017 (Martin and Vigne 2017)
- With a 2014 PIKE estimate at .63, 2017 estimate inferred to be down to .42
- What to expect?
 - Poaching has not dropped to zero
 - Storage condition not binding
 - Prices will move upward again

Outline

- - Introduction
 - The African elephant poaching crisis

- - Poaching elasticity with respect to Africa prices
 - Price pass-through
 - Elasticity of poaching with respect to China prices

Summary

- Compute elasticity of poaching with respect to prices (in producing and consuming countries)
- Supply is found to be inelastic: large price changes necessary to affect poaching.
- Still a lot of uncertainty in terms of larger picture of elephant conservation.